D. Kaniewski, E. Paulissen, E. Van Campo, M. Al-Maqdissi, J. Bretschneider, and K. Van Lerberghe (2008)
Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes
Proceedings of the National Academy of Sciences, 105(37):13941–13946.
The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100–800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C.
- DOI: 10.1073/pnas.0803533105
Document Actions